Jargon – The Expert’s Delight and the Novice’s Bore: Supernatant

Check out this post on scientific jargon that I wrote for my friend Matthew Niederhuber’s blog .jargon.

A drawing of turtle floating in an inner tube

Every field has jargon. Marketers talk of leads and conversions, cyclists speak of cadence and derailleurs, and programmers speak of grooming, for-loops, and much more. Jargon is everywhere. Both a boon and bane to understanding, jargon makes it difficult for any novice to get started in a field but makes it easy for experts to quickly communicate complex ideas to those in the know. Any word used only by experts in a field can be considered jargon. Scientists however, are perhaps the most egregious users of jargon.

My good friend Matt Niederhuber recently started thinking about how scientists use jargon and has been working on a blog where he introduces readers to the history of scientific jargon. Interestingly, few scientists know where many of the words they use come from, but learning about a piece of scientific jargon’s history can both provide one with a new way to get someone interested in science and reveal something about how science has advanced – the artistry of language serves as a proxy for the story of discovery.

Supernatant

The word “supernatant” is a fantastic example of scientific jargon. I’ve used it a million times but, the first time I saw it I probably thought it meant powerful vapor or something… I was very wrong. Simply put, the supernatant is the liquid portion left on top when a process produces solids and liquids or multiple distinct liquids.

For example, say you put a bunch of muddy water in a glass and let it sit. After a little while the mud would sink to the bottom and the water would sit on top of it. The water would be the supernatant.

On the face of it, supernatant appears to be a boring, mechanical word, but it has power in its specificity. When doing experiments, researchers often use procedures that separate complex mixtures into liquid and solid portions or multiple distinct liquid portions. The liquid that rests on top is the supernatant. Separating the supernatant from its counterpart may make it easier for a scientist to isolate something for an experiment. For example, when finished growing a bunch of cells, a researcher could separate the solid cells from their liquid waste (the supernatant). The researcher could then continue growing/using the cells while measuring chemicals in the supernatant. If you tell a fellow researcher to remove the supernatant from a mixture, she will know precisely what you’re talking about.

Interestingly, supernatant can also be used as an adjective to describe one thing floating on top of another. So, if you wanted to describe the whipped cream floating on top of your hot chocolate, you could call it the “supernatant cream.” While this seems somewhat superfluous (we just expect the cream to float after all), it does add a bit of flourish and specificity to the sentence.

Like the noun form, the adjective has been used extensively in scientific settings. For example, one could say “mix these two solutions together and then remove the supernatant liquid.” However, I don’t really remember anyone using it this way in the lab. This is possibly because you could just say “remove the supernatant” and there’s really no need for the adjective form. Indeed some of the adjective forms like “supernatant fluid, supernatant oil, supernatant liquid, or supernatant water” peak in their usage prior to “supernatant” according to google books so it’s possible that this use is going out of style.

Floating above – The Supernatant Breakdown

Supernatant’s two latin roots, “super” and “natant” make perfect sense for its scientific meaning.

  • Super – An interesting word on its own with a bunch of different meanings. Here it means “above” as opposed “great” as in “I’m super, thanks for asking!”
  • Natant – I didn’t actually realize this was a word before, but natant means swimming or floating. Natant has fallen out of popular usage, but the next time you go to the local pond, you might spot some natant ducks or, my personal favorite, a natant turtle.

Put these together and you get the adjective form “floating above.” When supernatant is used as noun, it’s just a thing that floats above. In our mud-water example, the water was “floating above” the mud – it was the supernatant.

Nonscientific Uses of Supernatant

Possibly because it’s meaning is so specific, you don’t hear supernatant being used much in nonscientific speech. However, it’s Latin progenitor (also supernatant) is just the third person present conjugation of the verb supernatō which means “to float.” Presumably you could use it to say something like “The ducks float down the river” if you were speaking latin. In this sense, it’s usage wouldn’t be that uncommon if we all still spoke latin. Alack we do not and must therefore look to other more contemporary uses.

Searching through the news, it was difficult to find examples of supernatant being used outside of science. One recent Market Watch article did use it to describe the current heights of the stock market: “Such a preternatural period of supernatant trade is bordering on insane….” Here supernatant is an adjective used to denote market growth without any apparent foundation – the market just seems to float upwards. Uses like this are rare, but perhaps they will pick up as scientific advances and scientists themselves seep ever further into the public eye.

Future Evolution for Supernatant

With the practicality of its roots, supernatant is, in some ways, an ideal word. It has only one definition with a very clear meaning. However, supernatant’s lack of use outside science and the outdatedness of it’s roots makes it a rather blatant case of jargon. If you’re a scientist writing a piece for the general public, trying to communicate your work to friends and family, or explaining a procedure to a lab novice, you’d be wise to avoid this word. Nonetheless, it’s interesting that supernatant displays the practicality and functionality that many scientists try to exhibit when designing their experiments. Why come up with a random word for the “liquid that floats above” when supernatant has that exact meaning and serves it’s purpose so well?

As scientists move out of their labs and into other careers perhaps we’ll see the specific meaning of supernatant applied in non-scientific but perfectly apropo situations. The next time I travel to San Francisco for work, I’ll be sure to point out the supernatant fog coming over the bay. The next time we hear about an oil spill maybe we’ll learn of the supernatant oil oozing over the ocean. Both of these uses, while true to the very specific definition of supernatant, serve to drive home the point that the fog and the oil each loom over their counterparts distinctly separate, distinctly unattached, distinctly other. The precision of supernatant’s definition gives us a means of describing anything the floats above and without any real attachment. If supernatant makes its way into common language, it may give people means to more easily describe ideas knocking around in their heads – the things that are above but separate. Supernatant leaders? The supernatnat 1%? Supernatant values? Even a seemingly boring word like supernatant, which already has great power is describing lab procedures, could have even greater power outside the lab because of its clear and specific meaning.

You’ll see this same theme come up again and again in scientific jargon. A personal favorite – while the name “sonic hedgehog” may have seemed totally appropriate for the name of a gene discovered in the 90s, even now it doesn’t quite hold up.

Boston, MA, USA